
Stuttgart Media University
Stuttgart, Fall 2019

Do-it-yourself information software
a naturalistic programming environment for end-users

Paul Sonnentag

First Supervisor: Prof. Walter Kriha

Second Supervisor: Mariano Guerra

Stuttgart Media University

i

Acknowledgements

First and foremost, I want to thank my supervisors Prof. Walter Kriha and Mariano

Guerra. I especially appreciate Prof. Kriha for always encouraging me during my studies

to explore new ideas. He was a great enabler for many unconventional projects besides

this bachelor thesis. I’m also grateful for the many conversations I had with Mariano,

which had a huge impact on the ideas I’ve developed in my thesis. During the past year,

he has become a mentor to me, and I hope we can continue this relationship in the future.

I also want to thank my family, who supported me throughout my studies and my girlfriend,

Christine.

ii

Abstract

This paper tries to bridge the dichotomy that exists in software today where there is a

strict separation between the people who use software and the people who build software.

This paper identifies the GUI pattern as a major cause of this problem. As an alternative,

this paper proposes a concept for a programming environment based on natural language

called Garlang.

The proposed solution focuses on the category of information software. This is software that

helps the user to learn things, to get answers to a question, compare different alternatives,

and come to a conclusion.

Instead of the software landscape we see today, where the end user has to pick a ready-made

solution, Garlang proposes an ecosystem where developers provide tool-kits that can solve

problems in a specific problem domain and the end user can mix and match them to

assemble the tool that solves exactly the problem they have.

Keywords – naturalistic programming, end user development, Datalog, logic programming

Contents iii

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Democratizing Programming . 1

1.3 The current state of information software 3

1.4 An alternative model for information software 6

2 Naturalistic Programming 9

2.1 Naturalists and Formalists . 9

2.2 Summary . 10

3 Datalog 11

3.1 Basics . 11

3.2 Extensions . 12

3.2.1 Built-in predicates . 12

3.2.2 Negation . 13

3.2.3 Aggregation . 14

3.3 Summary . 15

4 Garlang 17

4.1 Introduction . 17

4.2 Shift plan example . 17

5 Data Model 27

5.1 Primitive data types . 30

5.2 Summary . 30

6 Language Model 31

6.1 Statements . 31

iv Contents

6.2 Flexible noun order . 32

6.3 Determiners . 35

6.3.1 Referring determiners . 35

6.3.2 Quantifying determiners . 38

6.4 Searches . 40

6.5 Complex sentences . 42

6.5.1 That-clauses . 42

6.5.2 Conjunctions . 45

6.6 Rules . 46

6.6.1 Retraction of facts . 48

6.7 Value Statements . 49

6.7.1 Operators . 50

6.7.2 Special value form . 51

6.7.3 Rule examples . 53

6.8 Custom object literals . 56

6.9 Negation . 57

7 Summary 60

7.1 Related work . 60

7.2 Conclusion . 62

7.3 Future work . 65

References 66

List of Figures v

List of Figures

1.1 User interaction with software (uses Illustrations
https://thenounproject.com/search/?q=windowi=2634952 and
https://thenounproject.com/search/?q=headi=184237) 3

1.2 User interaction with Garlang (Figure uses illustrations
https://thenounproject.com/search/?q=headi=184237 and
https://thenounproject.com/search/?q=dictionaryi=2550890) 7

4.1 Auto generated forms for employee and shift 20

4.2 Search for shifts . 21

4.3 Search for shifts and for employees . 22

4.4 improved shift plan tool . 26

7.1 Inform 7 IDE with its dictionary . 61

1

1 Introduction

1.1 Introduction

Today the users of computers are separated into two classes: programmers and end users.

End users are mostly restricted to the role of a consumer. They cannot build custom tools

to solve their problems. Building tools is the role of experts, which makes the creation

of tools expensive and limits the customization of existing tools to fit the user’s needs.

Because the cost is high the only economical way to build software tools is to either serve

a large number of people so the cost can be divided between them or target smaller user

groups who are in turn willing to pay a large amount of money for a custom solution. This

situation leaves many people who have particular needs without appropriate tools because

it is not cost-effective to produce software for them. The more mainstream user is not

necessarily served well by this system either. Even though there are tools that solve their

problem, the tools might be too complex or too simple to fit their exact needs. Because

developers are trying to capture big markets, they have to unify the use cases of many

users, which leads to compromises for the individual user.

This paper proposes an alternative concept that enables software tools that are moldable

by the user. This new kind of software could turn the strict separation between consumers

and creators into a continuum. The goal is to build tools that the users can adapt to their

requirement, which would empower them to solve problems more efficiently.

1.2 Democratizing Programming

In today’s culture there is a movement that pushes the idea that as the importance of

software is increasing, programming will become an essential skill for everyone. This idea

is propagated by authors like Marc Prensky who claims programming is going to be a

new kind of literacy analogous to the history of textual literacy where reading and writing

used to be a specialized skill practiced by scribes (Prensky (2006)). Politicians like the

former president of the United States Barack Obama started to turn this idea into policy

with his "Computer Science for all" Initiative (Obama (2016)). Organizations like the

2 1.2 Democratizing Programming

nonprofit organization Code.org1 try to provide the platform for educators and students

to learn the basics of computer science. There are benefits to teaching coding to children,

but it is questionable if these efforts will give people any new abilities that are currently

only accessible to professional programmers. There is a big leap from learning about

basic control structures and loops in a toy environment to being able to solve real-world

problems.

This paper argues that forcing non-programmers to adapt to a world built by professional

programmers is a mistake. Instead, an alternative computing environment is necessary

that looks very different from professional programming environments today to make the

power of computing accessible to more people.

The work of Victor (2006) is helpful to rethink the role of software. In his paper, he lays out

a framework to understand the purpose of software. The author proposes three categories

of software derived from the basic human activities that they facilitate: Information

software (learning), Manipulation Software (creation), and Communication Software

(communication). He claims that most software falls in the category of information

software because most of the time people are less interested in creating but instead want

to use the computer to get answers to a question, compare different alternatives and come

to a conclusion. His criticism is that the focus on interaction is misguided in the context

of information software because the user is not interested in the manipulation of the

underlying model; They care about the conclusion they can draw from it. He illustrates

this with calendar applications as an example of how the learning needs of the user are

not satisfied by applications today.

For example, consider calendar or datebook software. Many current designs

center around manipulating a database of "appointments," but is this really

what a calendar is for? To me, it is about combining, correlating, and visualizing

a vast collection of information. I want to understand what I have planned

for tonight, what my friends have planned, what’s going on downtown, what’s

showing when at the movie theater, how late the pizza place is open, and

which days they are closed. I want to see my pattern of working late before

milestones, and how that extrapolates to future milestones.

1https://code.org

1.3 The current state of information software 3

He proposes that instead of designing information software as interactive machines; they

should be designed as information graphics with the additional ability that they can adapt

to the context of the user. This paper uses his categorization of software with emphasis on

information software specifically but instead of focusing on how designers should design

software the goal is to find an interface that does not force software in a fixed shape. The

users should be able to mold the tools they use and even build new tools by recombining

existing solutions.

1.3 The current state of information software

Figure 1.1: User interaction with software

Digital representations are inherently shapeless, and they can be presented in any way

that’s most useful to the user. This flexibility is not conveyed in most software systems

today. The dominant paradigm is to bundle software into discrete apps which have a

specific purpose and a fixed shape that cannot be altered by the user in a significant way.

We can explain the causes and effects of this limitation by looking at how information

software applications work in different scenarios.

When using information software, the goal of the user is to learn something. Therefore,

the starting point is the question that the user has. As example, consider a user who

is planning a trip by train. Their questions would be something like: How long does it

take to get to the destination or what is the difference between different connections in

terms of the duration and the cost? On the other side is the software which embodies the

knowledge that can answer the user’s question. The software represents the knowledge as

a combination of the facts and computations that it can perform on the facts. In this use

case, the facts could be the locations of the train stations and the schedule of the trains

4 1.3 The current state of information software

which are running. An example computation could then be the directions from location A

to location B based on the schedules of the trains. To bridge the gap between the physical

world of the user and the digital world of the computer, the knowledge model needs a

representation with which the user can interact.

This bridge between these two worlds is the user interface. The most common form of

a user interface is the graphical user interface (GUI) which the following discussion will

be limited to. The GUI is the point where the flexibility of the knowledge model gets

lost. Most user interfaces use physical metaphors from the analog world like forms and

buttons. In the trip planning example, the GUI could consist of a form with two fields to

enter the start, and the destination of the trip and a submit button to submit the search.

The advantage is that these kind of interfaces are easier to learn because the user has a

mental model of how buttons and forms work in the analog world. However, emulating the

physical world also has drawbacks. The model itself can solve arbitrary problems within

its domain by giving it a physical shape it is turned into a single purpose machine.

The developer of an app can allow the user to ask more complicated questions by building

more complex interfaces. For example, The trip planner could have additional destination

fields to plan trips with stops in between. However, this does not address the fundamental

problem because many constraints restrict the level of complexity that an interface modeled

on physical metaphors can allow. The first problem is that a modification of the interface

always requires an expert. Therefore all supported question have to be known in advance,

and because programmers are expensive, it is only economical to implement questions

which a majority of the users is interested in. Even if all questions could be known in

advance and money was of no concern, there is still the problem of how to represent all

question options in an interface without overwhelming the user. The pragmatic solution

that many applications choose is to only support simple questions in the interface. The

consequence for the user is that they have to do much manual work to get answers to

questions which have no representation in the interface. Consider the following scenario:

a user makes plans to go to a restaurant after work and wants to know how much time

it takes to stop by at home first if they use public transportation. The question itself is

not too complicated for the knowledge model, but if the trip planner can only tell the

user how to get from A to B, it takes two steps to get the answer. Whenever a question

requires multiple steps, the user has to memorize intermediate answers because, with every

1.3 The current state of information software 5

subsequent question, the application usually resets the previous context. This mental

work makes answering more complicated questions tedious and discourages the user from

exploring multiple options.

Another problem arises when the user tries to solve a problem that involves knowledge

models from multiple applications. Many applications expose their underlying knowledge

model only through a GUI. If the user has a problem which requires multiple applications,

they usually have to solve this by manually going back and forth between them. Consider

the following scenario of a hypothetical user Sandra who loves reading fantasy novels.

She likes to get her books at the local library. The library has an online catalog which

lists all their books with the information whether or not they are currently available. In

order to find out what book she wants to read, Sandra prefers a book review site that has

much more detailed information, reviews of the books and curated lists with recommended

books for different genres. Because the two applications live in separate worlds, she has to

run a manual lookup for each book on the review site to find out if it is available at her

library. Ideally, she could combine the knowledge models of both applications into a new

tool that shows her interesting books from the review site combined with the availability

information from her local library.

The app model also limits software to specific use cases. With the GUI paradigm an

application has to provide a graphical representation for each kind of question that the

user has. This pattern can be seen in information software where an application is often

split up into multiple screens where each screen is dedicated to a group of questions that

it can help to answer. This correlation between screens and questions can be illustrated

by looking at a typical calendar application. Most calendars have different views to ask

questions at different timescales. The monthly view is useful to answer questions like:

When is the next free weekend this month. The daily view is helpful to answer questions

like: when is the next event today. Calendars are a universal tool to deal with time.

Many applications can be modeled as calendars. For example, a store manager who needs

to create a shift plan for their employees could theoretically use any standard calendar

application for that. For each shift, they could create an event and assign workers to a shift

by adding them to the event. The problem is that a standard calendar has no views that

could answer questions like: How many hours has a person worked this month or which

shifts have not been assigned yet. The knowledge model of a standard calendar fits the

6 1.4 An alternative model for information software

requirements of the store manager. The problem is that the views of a standard calendar

only support general questions. As a result, the manager needs a different application

which provides screens specifically built for the scenario of designing a shift plan.

The intention of a GUI is to connect the user with the internal representation of the

software. However, it can also act as a barrier that limits the ways the user can interact

with the model: they cannot ask complex questions, and they cannot ask questions

concerning multiple domains. If there are no sufficient workarounds to answer a user’s

question, the user has to find an application that’s exclusively constructed to address their

scenario. This inability makes the users very dependent on programmers to build tools for

their needs.

1.4 An alternative model for information software

The previous section described how GUIs give end users simple access to digital knowledge

models, but at the same time, they impede them from solving complex problems. This

section gives a quick overview of an alternative model for information software which

addresses these issues.

For information software, the questions of the user should be at the center of the design.

Therefore we need a representation that connects the questions of the user with the

underlying knowledge model of the software. In typical applications, the questions are

represented indirectly in a GUI that is designed to answer predetermined kinds of questions.

The user communicates their specific question to the application by interacting with the

provided interface. The problem is that users cannot change the GUI to ask different kinds

of questions. For complex questions, the user is forced to manually execute the interactions

because the GUI provides no way to abstract complex workflows. Most applications only

expose a limited subset of the underlying knowledge model through the GUI which restricts

what a user could potentially express with the software. The knowledge model itself is a

black box that cannot be extended easily by the user or combined with the knowledge of

other applications.

This paper argues that a fundamentally different model for information software is necessary

in order to address these issues. This new model requires a direct representation of questions.

1.4 An alternative model for information software 7

This representation has to be flexible to allow the user to change how the result of a

question is visualized to adapt to the user’s context. The user should not depend on the

developer to anticipate their exact needs. At the same time, the representation has to

be expressive enough that the user can ask any question that the knowledge model can

answer. Another requirement is that the representation is natural and easy for end-users

to learn. In order to achieve that, the knowledge model of the software has to be presented

in a form that is understandable by the user. If the user understands the underlying

knowledge model of the software, this opens up many new possibilities. More advanced

users could start to extend the knowledge model of a generic application like a calendar,

for example, to adapt it to their specific problem of scheduling their employees. If multiple

applications adopt this model, users could build entirely new applications by combining

existing solutions. These are new abilities for end-users which are currently only accessible

to professional developers.

Figure 1.2: User interaction with Garlang

In order to demonstrate how such a system could look like this paper introduces a

hypothetical programming language called Garlang 2. It is a naturalistic programming

language that is modeled after how natural language works. Garlang uses the metaphor

of a dictionary to expose the knowledge model with definitions for the objects that exist

in an application expressed as English statements. The dictionary is not just a reference.

Garlang also allows the user to modify the definitions in the dictionary to add custom

business logic.

The main interface of Garlang is the explorer. It helps the user find answers to their

questions. The user can express questions as searches based on the concepts defined in
2Named after John of Garland, inventor of the word "dictionary"

8 1.4 An alternative model for information software

the dictionary. They can display the results of a search in different views, compare them

with alternative results, or run additional searches to provide more context. At the end of

an exploration, the explorer might contain many different interconnected searches that

highlight different aspects of the problem of the user. The state of the explorer can be

stored to communicate the decision to other people or to reuse it as a reusable template

for similar problems. A complete use case scenario of Garlang is described in section 4.2.

9

2 Naturalistic Programming

Garlang needs to present the knowledge model of an application in a form that is easy to

understand for an end-user. The computer, on the other hand, requires instructions that

have a precisely defined semantics. In order to solve this conflict, Garlang has to find a

compromise that is natural enough that end users can understand it without losing precise

semantics so a computer can interpret it. Natural language (NL) is too imprecise for

computers to interpret. Human cognition can resolve ambiguity in language, but computers

have not been able to emulate that process. There is a gap between what humans can

express with natural language and what computers can understand. From this problem,

the research field of naturalistic languages has emerged. Different authors have proposed

various approaches to define a restricted version of a language that can be formalized to

be executed by a computer and are more natural than traditional programming languages

(Pulido-Prieto and Juárez-Martínez (2017))

2.1 Naturalists and Formalists

Clark et al. (2010) divide the field into two thought schools: the naturalists and the

formalists. They both approach the problem from different sides. The naturalists start

with a natural language and try to restrict it into a limited version of the full NL so the

computer can interpret it. The resulting controlled language (CL) is not completely free

of ambiguities; there can be multiple valid interpretations of a sentence. NL processing,

in combination with heuristics, is used to pick the "best" solution. The formalists in

comparison view a CL as a formal language that behaves more like a natural language.

Therefore it is easier to use by humans than common formal languages. Formal CLs are

well-defined and predictable. Because the underlying philosophy of the two approaches is

very different, they lead to different kinds of CLs. In Formalistic CLs, each sentence has a

single valid interpretation, and each word has only a single semantic meaning. In contrast,

a naturalistic CL has small heuristics that are applied locally to make disambiguation to

select the correct interpretation of a word or sentence. A formalist might consider the

language complete once it is expressive enough while the naturalist tries to expand the

language to a more complete CL incrementally. As a result, naturalistic CLs might be

10 2.2 Summary

more natural to use but also harder to control because it is hard always to predict the

disambiguation decisions of the system. In contrast, formalistic CLs are more predictable,

but they can be less natural to read and may require the user to learn more about the

domain model of the CL.

2.2 Summary

Garlang follows the philosophy of naturalistic CLs to produce a language that feels familiar

to the end-user. It deals with the ambiguities that arise from this approach by continually

giving the user feedback on how it is interpreting sentences. If it cannot determine the

semantics of a sentence, Garlang falls back to asking the user to clarify the intended

interpretation. The effectiveness of this feedback mechanism depends on the ability of the

user to form a good mental model of the underlying computational model. This is one of

the reasons why Garlang is based on Datalog. Datalog is a logic programming language

that maps well to natural language because it is based on the assertion of statements and

application of rules. Datalog will be introduced in the next chapter and how Garlang is

translated to Datalog will be discussed in detail in chapter 6.

11

3 Datalog

3.1 Basics

The work of Ceri et al. (1989) is the basis of the following description of Datalog, which is

a declarative query language based on logic programming. The basic building blocks are

facts and rules. A logic program can only have a finite number of facts and rules. Facts

are statements about the model of the program, such as: "Bob is the parent of Frank." As

a Datalog clause this statement would be represented like this:

parent(bob, frank)

Rules can be used to deduce facts from other facts. For example, on the previous fact, we

could apply the rule: "If X is the parent of Y and if Y is the parent of Z then X is the

grandparent of Z." The corresponding Datalog clause looks like this.

grandparent(Z, X):- parent(X, Y)

Datalog clauses consist of two parts the left-hand side of the clause is called head, and

the right-hand side is called body. The arguments of a predicate are called terms, and

they can be either variables or constants. If the body of a clause is empty, it is called a

fact; otherwise, it is called a rule. By convention constants and predicates begin with a

lowercase letter and variables with an uppercase letter. Predicates with the same name

must always have the same arity. If a clause only contains literals, it is called ground. To

guarantee that a Datalog program always terminates the following conditions have to be

fulfilled:

• all facts have to be ground

• all variables which occur in the head of a rule need to reoccur in the body of the rule

Often it is necessary to get answers to specific questions instead of calculating all deducible

facts. For example, we might want to know just the children of Bob. To support such ad

12 3.2 Extensions

hoc queries, Datalog has the concept of goals. The goal to find bobs children could be

specified like this:

?- parent(bob, X)

3.2 Extensions

Datalog models a limited subset of first-order logic. There are several extensions which

extend the power of pure Datalog. The extensions which we will later need for the

implementation of Garlang are built-in predicates, negation, and aggregation. We will

discuss these extensions in the following sections.

3.2.1 Built-in predicates

Built-in predicates allow us to extend Datalog with custom functions. Each function is

assigned to a special predicate symbol like <, >, != or =. Built-in predicates can only be

used in the body of a Datalog clause, and they usually use infix notation. For example,

the not equal predicate could be used, to define a sibling predicate, which avoids that a

person is considered a sibling of themselves.

sibling(X,Y):-parent(X,Z),parent(Y,Z),Y != Z

The difference between these built-in predicates and ordinary Datalog predicates is that

they are not stored in the database. Instead, they are implemented as custom functions

which are evaluated when the Datalog program is executed. Most built-in predicates

define infinite relations. For example, < applies to all numbers. These infinite predicates

endanger the restriction that a Datalog program can only consist of a finite number of

facts. In order to ensure that programs with built-in predicates always terminate the

arguments of all built-in predicates have to fulfill at least one of the following conditions.

• the argument also occurs in a non-built-in predicate

• the argument is bound by equality constraints to a constant or an argument that

also occurs in a non-built-in predicate

3.2 Extensions 13

The evaluation of the built-in predicates is deferred until all of its arguments are bound

to constants. The equality predicate is an exception to this rule. As soon as one of its

argument is bound or a constant, the other argument can be bound to the same constant.

Built-Ins can also be used to add new operations to Datalog like arithmetic operations.

For example, to express additions like X + Y = Z the built-in predicate plus(X, Y, Z)

could be added with the requirement that X, Y, and Z are numbers. In Garlang, this will

be later used to add basic operations for the built-in data types number and text.

3.2.2 Negation

Pure Datalog does not allow negations. The problem is that if for example the goal

?-father(bob, billy) returns an empty result this could be either because Bob is not the

father of Billy or because the facts are incomplete and do not include all the children

of Bob. In order to infer negative facts from a pure Datalog program, we first have to

assume that the facts of our program are complete. This assumption is also called the

Closed World Assumption (CWA). The CWA can be applied to Datalog with the following

reasoning.

If a fact does not logically follow from a set of Datalog clauses, then we conclude

that the negation of this fact is true.

The CWA allows us to generate negative facts from a set of Datalog clauses, but we are

still missing the ability to make deductions based on negative facts. These deductions are

useful for rules like "if X is a Day and X is not a weekday, then X is a weekend day." One

extension that allows negations in the premise of a rule is called stratified Datalog¬. The

idea behind this is that rules are ordered based on the predicates of which they depend.

This ensures that before a rule R is evaluated, all negated predicates p i that occur in its

body are already evaluated. That means that all rules that generate facts for one of the

predicates p i have been already evaluated. For example, consider the following example

definition which considers everyone who is not closely related unrelated.

14 3.2 Extensions

unrelated(x, y):- ¬parent(x, y), ¬parent(y, x),

¬grandparent(x, y), ¬grandparent(y, x),

¬sibling(x, y)

Before the rule for unrelated can be evaluated, the rules that define the parent, the

grandparent, and the sibling predicate have to be evaluated first to get all their facts.

Then we can apply the CWA rule "locally" to get the negative facts of parent, grandparent,

and sibling. Afterward, the unrelated predicate can be evaluated.

Finding an ordering that satisfies the constraints stratified Datalog¬ is not always possible.

This problem can be illustrated with the following example.

p(x):- ¬q(x)

q(x):- ¬p(x)

P has the negated predicate q in its body, and q has the negated predicate p in its

body. Therefore, neither of them can be evaluated first. This is a limitation of stratified

Datalog¬. A program can be only evaluated with this approach if the dependency graph

of the predicates has no cycles. The dependency graph is constructed by connecting each

predicate that occurs in the body of another predicate as a dependency of that predicate.

If a program fulfills this requirement, it is called stratified.

Other approaches add negation for all Datalog programs like inflationary evaluation and

solutions which use three-valued logic. Stratified Datalog¬ was chosen because of its

simplicity, and the aggregation extension described in the next section requires stratified

Datalog programs as well. This area could be investigated in subsequent papers to remove

this restriction.

3.2.3 Aggregation

Another feature that is required by Garlang is the ability to summarize values. For

example, instead of getting all the children of a person, we might want to get the number

of them instead. Green et al. (2013) describe how aggregation can be added to Datalog.

With this extension we can calculate the number of children that a person has like this:

3.3 Summary 15

numberOfChildren(X, count<Y>):- child(Y, X).

An aggregate function like count in this example is a function that maps from multisets

of domain values to domain values. Examples for aggregate functions are count, max,

min, and sum. We can define them similarly to the Built-in functions by assigning each

aggregate function to a function symbol. A term that consists of an aggregate function is

also called an aggregate term. Aggregates can be only used in the head of a clause and

they have to fulfill these two properties:

• all variables in an aggregate term must also occur in the body of the clause

• a variable can occur in the head either only in aggregated terms or only in non

aggregated terms

The variables occurring in non aggregated terms are called grouping variables. A rule

with aggregates is evaluated by replacing all grouping variables with constants. There are

some problematic cases where aggregates can lead to programs that never terminate. For

example, consider the following example.

p(sum<X>):- p(X).

When this program is evaluated on the ground facts p(1) and p(2) the second rule would

deduce p(3). Now the second rule can be applied again, which would generate the fact p(6).

This step would repeat itself, continuously generating new facts without ever terminating.

This problem can be solved by disallowing recursion in Datalog rules if they contain

aggregated terms.

3.3 Summary

There are several benefits of using Datalog as the basis of Garlang. Defining Garlang

in terms of Datalog gives us a well defined semantic. This makes it easy to explain the

semantic of Garlang examples without having to implement an entirely new language.

Datalog gives us also much flexibility. It has been an active research topic for several

16 3.3 Summary

decades and the result of this are many optimizations and extensions that can be beneficial

for Garlang. This chapter described just a few basic extensions of Datalog that are

necessary for Garlang. More research is needed to evaluate how other Datalog extensions

could help to improve Garlang. A benefit on the practical side of Datalog is that it does

not lock Garlang into a specific technology. There are a lot of different Implementations

of Datalog that could be selected for a practical implementation of Garlang.

One deliberate limitation of Datalog is that it is not Turing complete. In return Datalog

programs are always guaranteed to terminate. This trade-off is also beneficial for

Garlang. Garlang is not supposed to be a general purpose language. Its goal is to expose

computational models with a language that’s learnable by end users. Complex algorithms

in a computational model can be implemented outside of Garlang in a conventional

programming language and exposed to Garlang as custom built-ins.

17

4 Garlang

4.1 Introduction

The following chapters will describe how Garlang works. The language is described by

looking at different examples that illustrate the different aspects of it. Datalog is used

to specify the semantics of Garlang and to demonstrate how it can be translated into

an executable program. This paper does not provide a full formal specification of the

language. There is more work required to create a real implementation of Garlang.

Garlang is not trying to solve the problem of how to build software that understands

natural language. Instead, it uses natural language as a metaphor similar to how the

desktop metaphor leverages peoples knowledge about physical objects to build GUIs

that are easier to understand. The goal is that an end user can apply their knowledge

about natural language to learn the programming language more easily. The semantic

model of Datalog fits well with natural language because it is based on facts and rules.

This declarative model is more similar to how natural languages works compared to

an imperative programming model. Garlang uses constructs from natural languages

like determiners, questions, sentence structure, and compound sentences to map textual

sentences to a formal Datalog representation.

4.2 Shift plan example

This section introduces Garlang by starting with a motivating example that gives an

impression of how the language works. Because Garlang is based on constructs from

natural languages, it should be readable as English text without knowing the semantic of

Garlang. There is a learning curve for end-users if they want to modify existing code or

write new Garlang programs, but understanding this example application does not require

any prior knowledge about the language.

As an example, the scenario from the introduction is used, where a manager wants to

know how to distribute their workers best to open shifts. This example will show how

Garlang can help a manager to build a tool that can answer questions like what shift is

18 4.2 Shift plan example

not assigned yet and which employees are available. Before the manager can ask these

questions, they have to model the problem first. For this example, Garlang has a basic

notion of calendars built-in that the user can utilize. This base model consists of kinds

like dates, time frames, point in times, and durations. It also describes rules, for example,

to determine the duration of a date or to find out if a time frame contains a date. Garlang

presents its built-in knowledge to the user as a dictionary. Each kind has its section with

the facts and rules that apply to it. The following is an extract from the dictionary with

the partial definitions of the event and time frame kind.

Event <plural events>

An event is a time frame.

An event has a title that is a text.

...

Time frame <plural events>

A time frame has a start that is a point in time.

A time frame has an end that is a point in time.

A time frame has a duration that is a duration (time frame duration):

time frame duration:

the duration between the end of the time frame

and the start of the time frame

...

The plural form of a kind is automatically generated but the user can always override the

default form for irregular nouns. The dictionary separates the definitions into statement

forms and rules. The statement forms in the definition describe what statements can be

made about an instance of the kind. For example, we can describe a meeting event with

the following statements.

The example meeting is an event.

The example meeting has a title that is "meeting".

4.2 Shift plan example 19

The example meeting has a start that is 05.06.2019 at 9:00.

The example meeting has an end that is 05.06.2019 at 10:00.

The first statement introduces the example meeting and establishes that it is an event.

The next sentence states the title of the event. Because an event is also a time frame, the

meeting has two statements that describe the start and end of it. Garlang then applies

the rules of event and time frame to these facts. The duration rule of the time frame, for

example, generates the fact "The example meeting has a duration that is 1 hour." based

on the stated start and end of the example meeting.

The dictionary serves as a reference to the user, but it is also functioning as a programming

environment. It is not static; the user can amend it by adding or removing definitions or

defining entirely new kinds. In the next step, we will see how we can extend the dictionary

to model the problem of the manager. The manager has to fulfill the following rules when

making a shift plan.

Each shift needs to be staffed with three employees; one of them has to be a

manager. The employees have different working hours. Full-time employees

work 40 hours per week, and part-time employees work 20 hours per week. At

the end of every month, each employee should have worked the exact amount

of hours defined in their contract.

We can start modeling this problem in Garlang with three new kinds: shifts, employees,

and managers.

Employee <plural employees>

An employee has a name that is a text.

An employee works a duration per week.

An employee is assigned to many shifts.

Manager <plural managers>

A manager is an employee.

20 4.2 Shift plan example

Shift <plural shifts>

a shift is a time frame.

An employee has a name, they work some duration per week, and they can be assigned to

multiple shifts. A manager is modeled as a special kind of employee. A shift is modeled as

a special kind of time frame. These specifications define only the minimum requirements

to represents employees and shifts in the system. Based on the statements we have defined

for each, Garlang automatically generates forms which the user can use to create instances

of the kind. For example, the metadata that name is a text is used to render a text input

for the name (fig. 4.1). Built-in types like a point in time can implement custom input

methods, as shown in the form of the shift. Statement forms like "An employee is assigned

to many shifts" generate input fields in both the employee and the shift. The purpose of

the forms is to provide a familiar input method for end users to create and modify objects

in the system.

Figure 4.1: Auto generated forms for employee and shift

Defining the employees and shifts is only excise work. The manager is interested in

learning how to distribute her employees best to make a decision in the form of a shift plan.

Answering questions is the purpose of the explorer in Garlang. It allows the user to run

searches, display the results in different views, compare them with alternative results, or

ask more questions to provide additional context. The explorer is a free form canvas that

allows the user to arrange result views in any way they need to aid their decision-making

process.

4.2 Shift plan example 21

Going back to the example of the manager, she might want to know initially what the

current shifts are. She can get an answer by creating a search for "all shifts". Results of a

search can be visualized in different ways, depending on the kinds of the result (fig. 7.1).

Built-in types can provide their custom views. In this case, the shifts are visualized as a

calendar by default because shifts are time frames.

Result views can also be interactive. For example, in the calendar view, the user can go

forward or backward in time or zoom out to see the shifts of a whole month. The views

also give access to the underlying data. For example, if the user wants to change a shift,

they can click on the shift to open the form of the shift. It is essential that all interactions

are optional. There should be no required interaction before the user is presented with a

visualization. Each view should provide reasonable defaults and adapt its behavior to the

usage patterns of the user. For example, the calendar should present the current time by

default. When the user changes the calendar to the weekly view in subsequent searches,

the weekly view should be used for shift results. The work of Victor (2006) on inferring

context can be used as inspiration to improve the ability of the explorer to adapt to the

user.

Figure 4.2: Search for shifts

Now that the manager can see all the shifts she wants to know which employees are

available for the shifts. In the explorer, she can place a second search for "all employees"

next to the shift calendar (4.3). The result of this search is a list of all the employees.

22 4.2 Shift plan example

Figure 4.3: Search for shifts and for employees

This search is not helpful yet because it just shows all employees. Instead, the manager

wants to contextualize the employee search and only show employees who are available

during the visible time frame of the shift calendar. Before she can perform such a search,

we need to define what it means that an employee is available during a time frame. For

this, we have to extend the dictionary. We can do this in a top-down fashion by breaking

down the concept into sub-statements until the sub-statements can be expressed in terms

of statements that are already defined in the dictionary. We can begin the definition with

the following rule.

An employee is available during a time frame when:

The employee has available time during a month that

overlaps with the time frame.

The worked hours of an employee are always calculated monthly. Therefore, we define

that an employee has time during a time frame if they have time during any month in the

time frame. Next, we need to define the availability for a month. This can be done with

the following rule.

An employee has available hours during a month when:

The total work time is less than the worked time.

The total work time: The total work time of the employee per month.

The worked time: the worked time of the employee during the month.

4.2 Shift plan example 23

The relationship "is less" is a built-in of Garlang. The comparison statement references

total hours and worked hours which are local definitions of the rule defined below the

statement. Next, we need to define the work hours and the worked hours of each employee

per month. Based on the weekly work time that we have defined earlier, we can describe

the monthly hours with the following rule.

The work hours of an employee per month is a duration (monthly work time):

The employee works a duration (weekly work time) per week.

The monthly work time: the weekly work time * 4

This rule is a simplification because the rule assumes that each month has the same

number of days, and it does not consider public holidays. With this simplification, the

monthly hours can be calculated by multiplying the weekly work time by four. The next

rule calculates the time an employee has worked per month.

The total work time of an employee during a month is a duration (work time):

the work time:

The sum of the duration of all shifts that are

assigned to the person and happen during the month.

The number of hours is calculated by summing up the duration of all shifts assigned to

the employee during the month. "sum of" is a built-in operation of Garlang. With this

last definition, we achieved our goal of defining the availability of an employee in terms of

concepts that are already known to Garlang. We can now switch back to the explorer and

connect the employees search with the shifts search.

Visualizations themselves are also objects in Garlang, just like employees and shifts. They

state facts about them, and the user can make new statements about them. For example,

the calendar visualization makes a statement about the currently visible time frame. We

can use this fact in the employee search and change it to the following.

all employees that are available

during the visible time frame of the shifts search

24 4.2 Shift plan example

The employee search is now linked to the shift search and updates automatically whenever

the time frame of the calendar changes. With this tool, the manager can answer both

her main questions: Which shifts need to be assigned and which employee is available.

However, this is not a satisfactory solution yet. The manager is missing some critical

information. In order to see which shifts are fully assigned, she has to open the form of

each shift. She can easily see who is available, but there is no simple way to communicate

the decision whom she wants to assign to a shift back to the system. In the remainder of

this section, we want to show how it is possible to customize the tool incrementally to

address these issues.

First, we want to highlight all shifts which are not fully assigned. In order to do this, we

need to add two rules to the shift. The first rule defines a shift as fully assigned when it

has two employees and one manager.

A shift is fully assigned when:

3 employees and 1 manager are assigned to the shift.

The reason why the rule requires three employees is that a manager is also an employee.

The second rule adds a highlight-statement for each shift that is not fully assigned.

A shift is highlighted when:

The shift is not fully assigned.

The highlight-statement is part of the built-in vocabulary of Garlang. It is not mapped to

a specific effect. Instead, other objects can implement rules to react to it. For example,

the list view and the calendar view can render results that have a highlight fact with a

different background color.

As a second improvement, we want to make it easier for the manager to assign employees

to a shift. The manager should be able to drag and drop employees on the shifts that she

wants them assigned to. Garlang supports drag and drop by default. All objects in a view

should be draggable and also allow other objects to be dropped on them. The views do

not define any effects that should happen as a result of a drag and drop event; they just

add the fact that an object is being dragged or dropped and the user can then define the

semantic meaning of this event. For example, if the entry for Bob in the employee search

4.2 Shift plan example 25

was being dragged the list view would state the fact: "Bob is being dragged". The drag

and drop facts always reference the underlying object, not the graphical representation

that is being dragged. The benefit of that is that the user can define drag and drop rules

independent of how an object is visualized. We can apply drag and drop interactions to

the shift plan tool with the following rules.

When an employee is being dragged:

All shifts that the employee is available for are highlighted.

After an employee is dropped on a shift:

The employee is assigned to the shift.

The first rule highlights all shifts that an employee is available for while being dragged.

The second rule assigns the employee to the shift on which it is dropped. The second

rule is an after rule. The difference to a when rule is that a after rule changes the state

permanently while a when rule only asserts the facts in its conclusion as long as the

premise is true. In this case we want the employee to be assigned to the shift after it is

dropped on the shift and not just in the instance when the drop event happens.

The last improvement we will discuss is adding more information to the employee table.

Right now, the manager lacks some crucial information. She can only see who is available

but not how many hours each employee has already worked and which of them are

managers. The table view allows the user to add additional columns which allow sub

searches for each result. We can use this feature to add columns for the total work time,

the worked time, and one to indicate if the employee is a manager or not. These are the

corresponding search expressions. "the employee" refers to the employee in the result set

that each sub-search is applied to.

the total time:

the sum of the total work time of the employee during

all months that overlap with the visible time frame of the shift search

the worked time:

the sum of the worked time of the employee during

26 4.2 Shift plan example

all months that overlap with the visible time frame of the shift search

is a manager: The employee is a manager.

The improved version of the shift plan is depicted in fig 4.4. This shift planner is not a

complete solution. There are still many things that could be improved. For example, the

current shift plan does not consider the holidays of the employees or limitations of how

long an employee can work per day. The goal of this example was not to present a perfect

solution but to give an impression of how programming in the Garlang environment could

look. With the three improvements, we have illustrated how Garlang gives the user the

ability to incrementally shape their tool to solve their specific problem. Next, we will

discuss how Garlang is implemented internally.

Figure 4.4: improved shift plan tool

27

5 Data Model

Garlang models the world as objects that are in a relationship with each other. An object

is defined by its kinds. A kind is a collection of characteristics that can be applied to an

object. Kinds can also be viewed as different perspectives on the same object. For example

a meeting in Garlang has the kind event and time frame. The perspective from the event

kind is that the meeting has a title and people that are attending. If the meeting is viewed

as a time frame, it has a start and an end. Kinds themselves can be defined in terms of

other kinds. In the shift plan, for example, we have defined the kind manager as a kind of

employee. If we create an object that has the kind manager, this hierarchical structure is

flattened. Each object is a unique id which is used to refer to the whole object. The kinds

of an object are added to the object with is-relationships between the object id and the

instance of the kind. An instance of a kind is also a unique id with additional information

about what kind it is. The following example shows the example Datalog representation of

a manager that is assigned to a shift. Two functions are introduced here uniqueId returns

an object id and new is a function that accepts a kind as an argument and returns a new

instance id of the kind. All facts of a kind are attached to the kind instance.

sandra = uniqueId()

employeeKind = new(employee)

exampleShift = uniqueId()

shiftKind = new(shift)

is(sandra, new(manager))

is(sandra, employeeKind)

is(exampleShift, new(timeFrame))

is(exampleShift, shiftKind)

assignedTo(sandra, shiftKind)

...

Kinds that depend on other kinds can be expressed with Datalog rules. The following is

28

an example that adds an employee kind to each object that has a manager kind. This

rule uses the kindOf predicate which the new function adds to a kind instance when it is

created.

is(Object, new(employee)):- is(Object, Manager), kindOf(Manager, manager)

Modeling objects as a collection of its kinds gives the user significant flexibility. Objects

can combine multiple unrelated kinds, which is a problem in a lot of class-based hierarchical

object models. Next, we have to consider a few cases to show that Garlang can resolve

the right kind when dealing with objects that have multiple kinds. In most cases, the kind

is explicitly stated because most rules are defined per kind in the dictionary. Here is an

example rule from the definition of an employee.

An employee has available hours during a month when: ...

Both "an employee" and "a month" reference a specific kind. The rule can be applied

without ambiguity to any pair of objects where one object has an employee kind, and the

other has a month kind. There are exceptions where a statement references a specific kind,

but the user intends to reference the object id or another kind of the object. Consider the

search expression in the shift plan example that determines if an employee is a manager.

The employee is a manager.

If we interpret "the employee" as a reference to the kind employee, this statement will never

be true. In this specific case, the right interpretation would be to interpret "the employee"

as a reference to the object id. Garlang could run a check that detects contradictions like

this which can be resolved by replacing the kind reference with a reference to the object.

In this paper, we assume that Garlang implements such an algorithm, that examples like

this work as expected. Future work is necessary to design the actual implementation of it.

There is a similar problem that occurs if we look at the following example.

The name of the manager.

29

The name is part of the employee kind, which is the basis of the manager kind. In this

instance, Garlang needs to replace the manager kind reference with a reference to its

sibling employee kind. The reference resolution algorithm described in the previous section

should be generalized to handle this case as well. The replacement of a kind reference

with a reference to a sibling reference has to happen with some caution. Consider the

following case.

The name of the month.

If we applied the algorithm here, Garlang would replace "the month" with its sibling

employee kind. It is theoretically possible that an object exists that is a month and an

employee, but it is more likely that the user made a mistake here. Before replacing a kind

with its sibling, Garlang should check if the sibling kind has the other kind as its basis.

This check would succeed for the manager because it is defined as an employee, whereas a

month is not an employee. If this check fails, Garlang should warn the user to indicate

that there might be a problem.

In Garlang objects can be assigned to a name. An example of this is the statement "Sandra

is a manager". It creates a new object and assigns it to the global name, Sandra. In this

example, if we make statements about Sandra, Garlang has to determine to which kind

the statement belongs. In most cases, there should not be much overlap in the definitions

of different kinds. It is possible though that an object has multiple kinds that define the

same statements. For example, if both kinds manager and employee define an hourly rate

consider the semantics of the following statement:

Sandra has an hourly rate that is 30 dollars.

It is unclear if the statement references the hourly rate of the employee kind or the manager

kind or both. In this case, Garlang should display a dialog to ask the user to clarify

which relationship they mean. This problem can also occur when referencing objects by

kind and should be solved in the same way. Generally, it is good practice to avoid this

situation altogether by defining statement only in one place or express similar concepts

with different wording to avoid confusion. Besides global names, Garlang also allows local

names inside of rules. An example of this is the monthly hours rule of the employee from

the shift plan example.

30 5.1 Primitive data types

The work hours of an employee per month is a duration (monthly hours):

...

Local names are limited to the scope of the rule in which they are defined. A local name

can be defined by writing a name in brackets after a kind. Instead of referring to an object

by its kind, local names can be used to assign more descriptive names to them. They are

also necessary for statements where multiple objects have the same kind. They do not

need any special consideration when resolving references and can be treated identically to

references by kind.

5.1 Primitive data types

Garlang has two primitive kinds: numbers and text. An object that has a primitive kind is

also called a primitive object. Both text and numbers have built-in literal forms. Numbers

can be either expressed as Integers like 5 or as decimal like 3.14. Text literals have to be

wrapped in quotation marks to explicitly indicate that Garlang should not interpret the

text as a statement. Here are two example statements that use primitive kinds.

The work time of Bob per month is 5 hours.

Bob has a name that is "Bob".

Primitive objects have a few restrictions. First of all, they can either be a number or a

text, not both. Secondly, a primitive object cannot have any other kinds unless the kind

does not add any new behavior to the object. The problems with extending primitive

objects are discussed in section 6.8.

5.2 Summary

This chapter described the data model of Garlang. The purpose of this description is to

have a foundation for the next section, which explains how Garlang interprets natural

language. This description is not complete. There are open issues like how individual

objects can override statements that are defined for the whole kind. These are problems

that need to be addressed in future iterations of Garlang.

31

6 Language Model

The shift planner example covered the majority of the features of Garlang, but it was

just a quick overview, and it did not go into detail how they work. The explanation

of the example relied on the reader’s interpretation of Garlang as English text. In the

previous chapter, we described how Garlang models the world. This chapter focuses on

how Garlang interprets individual sentences and words.

6.1 Statements

Garlang interprets language as a combination of statements. Garlang’s model of language

is not based on complex natural language processing; instead, it interprets, each statement

as belonging to a particular statement form which then can be mapped to a predicate in

Datalog. Consider the following sentence, which consists of a single statement.

Bob is assigned by Sandra to the example shift.

Garlang starts parsing this sentence by identifying all nouns in the sentence. In this case

these are Bob, Sandra and the example shift. These are the objects in the statement.

Garlang uses the remaining text as an identifier of the statement form. Statement forms

are always specific to the kind of their objects. In this example, we interpret Bob as a kind

of employee, Sandra as a kind of manager and example shift as a kind of shift. Therefore,

this statement belongs to the following statement form.

An employee is assigned by a manager to a shift.

The statement form is then mapped to a Datalog predicate to generate a new fact with

the extracted objects as arguments. The resulting Datalog predicate looks like this.

isAssignedByTo(bob, sandra, exampleShift)

Statements can have multiple objects, although in most cases, a statement should not

involve more than four objects because a statement always represents a single relationship.

32 6.2 Flexible noun order

Complex concepts can be described with multiple statements. Sentences can contain more

than one statement. An example of a sentence that contains multiple statements is the

definition of the name of Bob.

Bob has a name that is "Bob".

This sentence combines the statement forms "An employee has a name." with the statement

form "A name is a text." which is attached as a that-clause. Complex sentences will be

discussed in detail in section 6.5.

Garlang’s interpretation of language as a combination of statements has the benefit that

it can be implemented with a simple model. At the same time, the end user is not limited

in the way they can phrase sentences because Garlang only needs to be able to extract the

nouns in each statement. A simple implementation model also leads to a simple mental

model for the user. This is a problem with some naturalistic programming languages

based on advanced natural language processing. If the language misinterprets a statement,

it is hard for the user to know how to rephrase it because the parsing process is a black

box (Clark et al. (2010)). In Garlang, a wrong interpretation means that a statement is

not mapped to the correct statement form. The user can correct the interpretation by

selecting the intended statement form from the dictionary. One drawback is that users

need to learn the specific vocabulary of the knowledge model, how things are phrased.

This limitation can also be seen as a benefit because it enforces a consistent vocabulary

across a Garlang application, which makes it easier to understand. One disadvantage

remains, the statement is the smallest unit and can not be split up. For example, consider

the previous statement form, which described the shift assignment. The user cannot just

use a single aspect of the statement form and state "Bob is assigned by Sandra". The

statement form can only be used precisely how it was defined as a complete statement.

The next section addresses parts of this issue to relax Garlang’s rigid interpretation of

statements to makes statements behave more like natural language.

6.2 Flexible noun order

In English, a sentence can be phrased differently to reorder the nouns in it while keeping

the original semantics. Consider how the shift assignment statement could be rephrased

6.2 Flexible noun order 33

with different noun orders.

A manager assigns an employee to a shift.

A manager assigns to a shift an employee.

An employee is assigned to a shift by a manager.

An employee is assigned by a manager to a shift.

To a shift, an employee is assigned by a manager.

To a shift, a manager assigns an employee.

If Garlang parsed these sentences strictly following the rules from the previous chapter, the

result would be six different statement forms without any semantic connection. Forcing

the user to separately define all statement forms that arise when reordering the objects

in a statement is not a satisfactory solution. It is also not possible to restrict the user

to a single noun order because reordering words is essential to express different concepts.

Consider these two searches.

All shifts that Bob is assigned to by a manager

All employees that are assigned to a shift by Sandra

Even though searches have not been introduced formally, reading these two text fragments

as English text makes it clear that different noun orders are needed to express both

searches. The first search matches all shifts that Bob is assigned to, and it contains the

statement form "To a shift, an employee is assigned by a manager.". The second search

returns all employees that are assigned by Sandra. The underlying statement form here is

"An employee is assigned to a shift by a manager.".

In order to solve this problem, Garlang’s interpretation of statements has to be adapted.

Two statement forms should be matched to the same predicate if they describe the same

semantic relationship and differ only in the order of their nouns. Garlang uses a heuristic

approach for matching statements. This heuristic has to solve two subproblems. First,

the heuristic needs to select the correct predicate from all defined predicates. Afterward,

Garlang has to map back the order of the nouns in the statement to the order in the

original statement form. It is also crucial that Garlang communicates its interpretation

back to the user while giving them the option to correct it. The heuristic also needs a

34 6.2 Flexible noun order

confidence measurement which warns the user if Garlang is not sure how to interpret a

statement.

The first criterion that can be used to filter matching predicates is the arity and the

kinds of their arguments. The kinds of the arguments are sometimes ambiguous. For

example, the object Sandra has both kinds employee and manager. Therefore all possible

kind combinations of all objects in a sentence have to be considered as potential matches.

Matching arity and argument types of a predicate is only a necessary condition there

can be multiple predicates with the same type signature and a predicate should be only

considered a match if it has the same semantic structure.

A simple approach to check if two sentences have the same basic structure is to compare

the text of the sentences without the nouns. When this method is applied to the possible

alternatives of the shift assignment statement, this will result in the following strings.

assigns to

assigns to

is assigned to by

is assigned by to

to is assigned by

to assigns

These strings look similar, but they are not a strict reordering of each other for example,

assign is turned into assigned when used in the passive form, and the word by is added.

There are many algorithms which solve the problem of determining the similarity between

text strings. The most well known is the Levenshtein distance, which can be used to

determine the minimum number of edits that are required to turn one string into another

string (Levenshtein (1966)). From a similarity measurement like the Levenshtein distance,

we could also derive a confidence score. The smaller the distance, the more confident

Garlang can be that it has found the correct match. The Levenshtein distance is only

one example of an Algorithm that could be used. More work has to be done to compare

different algorithms and to benchmark which algorithm works best in practical use case

scenarios. For example, an approach that considers not only single insert, modify or delete

actions but can also detect reordering of substrings would be desirable.

6.3 Determiners 35

Another way to improve the matching is to implement more grammatical rules in Garlang.

For example, if we added a rule on how to turn a sentence into passive voice, Garlang could

automatically generate passive forms to add them as synonyms for the original statement

forms. The grammatical rules do not have to be perfect because the synonym forms are

only used for matching statements. It is acceptable if they generate slight grammatical

errors for irregular forms. The generated synonyms would also solve the problem of how to

match back the order of the arguments. Even though these rules make the implementation

more complicated, they do not break the mental model of the end user that Garlang

matches statements to predefined statement forms.

In the general case, the arguments can be mapped back based on the kind of arguments.

This mapping is only possible if each kind occurs only once in the predicate. In this

case and all other cases where the heuristic does not find a match with a high enough

confidence, Garlang should fall back to asking the user to clarify what statement form they

meant and how the nouns should be mapped back. Garlang can remember the correction

of the user and store it as an alias for the selected statement form to pick the correct

interpretation in the future.

6.3 Determiners

Determiners have been already used in previous examples with the implicit semantic

from natural language. This section explains the role of determiners and how Garlang

interprets them. Determiners are words that come before nouns. They have mainly two

roles: referring determiners specify what a noun refers to and quantifying determiners

specify how much of something or how many things there are (det).

6.3.1 Referring determiners

Referring determiners are most important in Garlang. There are two different kinds

of them: definite and indefinite articles. The definite article the is used when making

statements about specific objects. These are also called specific references. Consider this

example which states a fact about the objects Bob, Sandra, and the example shift.

36 6.3 Determiners

(The) Bob is assigned by (the) Sandra to the example shift.

The definite article in front of Bob and Sandra is usually omitted because the English

language has a rule that prohibits the definite article in front of people’s names. Because

Garlang does not understand what a name refers to definite articles are always optional

when used in combination with names. Besides named objects, number and text literals

also fall in the category of specific references. They are always used without a determiner.

In contrast to specific references, Indefinite articles like a and an allow the user to make

general statements about kinds. These are called general references. A and an can be used

synonymously in Garlang, but the user should follow the grammatical rules of English.

One example of the usage of indefinite articles is the definition of statement forms like this.

An employee is assigned by a manager to a shift.

In the statement form, only indefinite articles are used. It is not a statement about specific

objects; it instead describes a general relationship that objects of a specific kind can have.

That is why a statement that only contains general reference is called a statement form.

Garlang would translate the statement to the following Datalog representation.

isAssignedByTo(Employee, Manager, Shift), kindOf(Employee, employee),

kindOf(Manager, manager), kindOf(Shift, shift)

When referring to a kind like "an employee" Garlang translates this to a variable in

Datalog with the implicit predicate kindOf that indicates that the variable is an employee.

This interpretation mirrors the semantic of the sentence as plain English. When we are

talking about an employee, we mean an object that is a kind of employee.

Specific and general references can also be combined in a single statement. This combination

allows the expression of specific statements about a category of objects. Consider, for

example, this statement which states the hourly wage for all managers.

A manager earns 50 dollars per hour

6.3 Determiners 37

This statement has the statement form "A manager earns some number dollars per hour".

In this example, a number is bound to the number literal 50, and a manager is left as a

general reference to any manager. Garlang’s interpretation of this statement is that the

hourly rate of 50 dollars should be applied as a fact to all managers. This interpretation

also matches the semantics of the statement if we would read it as a plain English statement.

Internally this statement is translated to the following Datalog rule.

earnsDollarsPerHour(Manager, 50): - kindOf(Manager, manager)

There are some problems with mixing specific and general references that lead to ambiguity.

For example, consider the interpretation of the following sentence.

Bob is assigned by a manager to a shift.

If we interpret this sentence as plain English text without any further context, it is not clear

which manager assigned Bob to which shift. If we evaluate the sentence with Garlang’s

interpretation of determiners a manager refers to any manager and a shift refers to any

shift. As a result, Bob would be assigned to all shifts by all managers. This interpretation

clashes with the semantics of the sentence as a plain English text.

In order to avoid this problem, Garlang applies some restrictions on how specific and

general references can be used together in statements. First of all, statements that combine

both types of references are only allowed in the definition of a kind in the dictionary. They

can only contain a single generic reference to the kind in which they are defined. These

limitation cover cases like the previous example "A manager earns 50 dollars per hour "

which is a general statement that applies to all instances of the manager kind. In this case,

the interpretation of Garlang fits with the natural language interpretation of the sentence.

Definite articles have been introduced in combination with names. They can also be used

together with kinds. Combining "the" with a kind creates a reference to an object of this

kind that has been introduced before. The interpretation of a statement with a specific

reference to a kind, therefore always depends on its context. An example of definite

references to kinds is the highlight-rule of the shifts.

when a shift is not fully assigned.:

38 6.3 Determiners

The shift is highlighted.

The premise refers to shift with an indeterminant article, which means it can be applied to

any shift that is not fully assigned. In the context of the rule "the shift" now refers to the

shift that has been introduced by the premise. Garlang would translate the highlight-rule

to the following Datalog clause.

isHighlighted(Shift):- kindOf(Shift, shift), ¬isFullyAssigned(Shift),

As expected both the arguments of the isHighlighted and the isFullyAssigned predicate

have the same variable as an argument. The only difference is that In the Datalog clause,

the premise and the conclusion are flipped.

6.3.2 Quantifying determiners

Quantifying determiners can express how many or how much there is of something. Garlang

adopts its semantic of quantifiers from how they work in plain English. In general, Garlang

supports four quantifiers: no, [number], many and all. The interpretation of them depends

on the context. They can be used in statements, statement forms, and searches.

In order to understand how quantifiers work in the context of statements, consider this

example which uses all four of them.

Bob is assigned to no shifts.

Laura is assigned to 5 shifts.

Michael is assigned to many shifts.

Sandra is assigned to all shifts.

The first sentence has a clear semantic meaning in English. After this statement has been

made, all previous assignments of Bob should be removed. Implementing this in Garlang

is not possible with the current model of Datalog because we have not defined a semantic

for retracting facts. This is a severe limitation that needs to be removed in future versions.

The problem is discussed in more detail in the conclusion in section ??.

6.3 Determiners 39

The second and third statements are both invalid in Garlang. The problem with the

number quantifier in the second statement is that this statement cannot be true if there

are less than five shifts in total furthermore if there are more than five shifts it is unclear

to what subset of them Laura should be assigned. The third statement is even less

clear because many can mean any number of shifts bigger than two. To prevent these

ambiguities, Garlang forbids both these quantifiers in the context of statements. This

problem does not arise from the implementation model of Garlang but is caused by the

fact that natural language is sometimes not as precise as we need it to be to define a

runnable specification. If the user uses these quantifiers in a statement, Garlang should

explain to the user why this statement is not specific enough and suggest corrections.

The last statement has a clear interpretation: All shifts that exist should be assigned to

Sandra. Garlang translates this sentence to the following Datalog rule.

assignedTo(sandra, Shift):- kindOf(Shift, shift)

The same quantifiers can be applied to statement forms as well. Consider the following

examples.

An employee is assigned to no shift.

An employee is assigned to 5 shifts.

An employee is assigned to many shifts.

An employee is assigned to all shift.

The first statement form is not very useful because it would forbid making such a statement.

When the user defines a statement form with the no-quantifier, Garlang should warn the

user that it will ignore this definition.

The second statement which uses the number quantifier enforces that an employee is

assigned to exactly five shifts. This validation is evaluated in the generated form of the

employee, and an employee can not be saved or created if it is not assigned to precisely

five shifts. This quantifier can also be used to define mandatory fields when using the

quantifier 1. By default, the relationships of a kind are one to one and optional like the

statement form "An employee is assigned to a shift"

40 6.4 Searches

The third statement indicates that a shift can be assigned to any number of shifts. This

information is used by Garlang in the automatically generated forms to provide multi-value

input fields.

The last statement is technically not a statement form because Garlang interprets this

statement as a general statement that all employees should be assigned to all existing

shifts. It is translated to the following Datalog rule.

assignedTo(Employee, Shift):-

kindOf(Shift, shift), kindOf(Employee, employee)

This rule is just a more general version of the example where the all quantifier was applied

to a statement about a specific employee.

Quantifiers, in combination with searches, have two roles. They can be used to start a

search, and they can be used inside of a search to express quantifier constraints. These

two concepts will be discussed in the next section about searches.

6.4 Searches

Searches are used to find objects that match specific criterions. The all- and the number-

quantifier can be used to define a search. In the most simple form, a search can consist of

a quantifier and a kind. More complex searches will be discussed in the next section about

complex sentences. Here are example searches using the two quantifiers.

all employees

5 employees

Garlang translates these searches into goals in Datalog. In this case, both searches are

translated to the same goal because, in Datalog, we cannot express a limitation on the

number of results. The limit of a search is applied after the Datalog goal has been evaluated.

In the future Datalog could be extended to support partial evaluation of goals to optimize

the speed of the search execution. The following Datalog goal represents the two searches.

6.4 Searches 41

?- kindOf(X, employee).

Quantifiers can also be used inside of searches. For the following examples, that-clauses

are needed. They will be explained in the next section. Without these details, the four

example searches can be understood as English sentence fragments. The examples search

for all employees without a shift, with five shifts, with more than one shift and with all

shifts that exist assigned to them.

all employees that are assigned to no shift

all employees that are assigned to 5 shifts

all employees that are assigned to many shifts

all employees that are assigned to all shift

Garlang translates the first search to Datalog using the negation extension. The result is

the following goal.

? - kindOf(Employee, employee), ¬isAssignedTo(Employee, Shift), kindOf(Shift, shift)

In order to translate the other searches to Datalog, we need to define two new predicates

first. The predicate countAssignedShifts is a helper that defines the number of assigned

shifts for each employee. This predicate is specific to this example whenever a number-,

many- or all- quantifier is used in combination with a statement Garlang has to generate

such a predicate. The second predicate instancesOfKind defines how many instances each

kind has. It is necessary to implement the all-quantifier. The two predicates have the

following definition.

countAssignedShifts(Employee, count<Shift>):- isAssignedTo(Shift, Employee)

countInstancesOfKind(Kind, count<Instance>):- kindOf(Instance, Kind)

With these two predicates, the three quantifier statements can be translated into the

following Datalog goals. The comparators = and > are built-in predicates.

?- kindOf(employee, Employee), countAssignedShifts(Employee, X), X = 0

42 6.5 Complex sentences

?- kindOf(employee, Employee), countAssignedShifts(Employee, X), X = 5

?- kindOf(employee, Employee), countAssignedShifts(Employee, X), X > 1

?- kindOf(employee, Employee), countAssignedShifts(Employee, X),

countInstancesOfKind(employee, Y), X = Y

6.5 Complex sentences

What makes language expressive is the fact that statements are not stated in isolation.

Instead, complex concepts can be described by combining multiple statements in a single

sentence. English is highly expressive and allows a large number of different constructions.

In comparison, Garlang is focused on supporting a minimal set of constructions that is

sufficiently expressive. The two concepts discussed here are that-clauses and conjunctions.

Complex sentences have been used extensively in the shift plan example. The following

sections explain how they are implemented in Garlang.

6.5.1 That-clauses

A That-clause allows the user to attach an additional statement to an object. Consider

this example that searches for all employees who have been assigned to at least one shift.

all employees that are assigned to a shift

The that-clause is attached to the employee and adds the requirement that the employee

must be assigned to a shift. The attached statement has the form "an employee is assigned

to a shift". When attaching such a statement with a that-clause, the first noun in the

statement form is omitted and implicitly set to the object to which the statement is

attached. In this case, the statement has to be adjusted to match the plural form of the

object. To match this statement even though it deviates from the original form, Garlang

uses the heuristic discussed in section 6.2 about flexible noun order. This example is

translated into the following Datalog goal.

?-kindOf(Employee, employee), isAssignedTo(Employee, Shift), kindOf(Shift, shift)

6.5 Complex sentences 43

The Datalog goal is a combination of the kindOf predicate from the base search which

asserts that the result has to be an employee and the isAssignedTo predicate which has

been attached by the that.

Garlang allows stacking multiple that-clauses together. For example, we could attach a

second that-clause to the shift to search for all employees who work together on a shift

with Bob. This example, with its corresponding Datalog representation, looks like this.

all employees that are assigned to a shift that is assigned to Bob

?- kindOf(X, employees), isAssignedTo(X, Shift), kindOf(Shift, shift),

isAssignedTo(Shift, bob)

That-clauses can also be used in regular statements. One typical example is the declaration

of properties of an object. At first, consider the statement form of this example, which

defines the name of an employee.

An employee has a name that is a text.

This sentence defines the statement form "An employee has a name". A new kind name is

mentioned here which has not been defined before. Garlang allows introducing new kinds

in statement forms as long as the new kind is based on a previously defined kind. The

that-clause is used here to define the base kind of name. It attaches the statement "A

name is a text" to a name. These inline definitions are especially useful in combination

with primitive values. A benefit of defining properties as new kinds is that it makes the

matching of statements to statement forms more robust. Consider, if all properties of the

employee are defined without new kinds like this.

An employee's name is a text.

An employee's address is a text.

...

All these statements have the same parameter kinds one employee and one text. When

the same statements are defined with custom kinds, the statement can be differentiated

purely on the kinds the objects in the relationship.

44 6.5 Complex sentences

That-clauses are not limited to attaching kind assertions. They can be used to add any

assertion. The attached statement is interpreted as a validation that is evaluated before

any statement of this statement form is accepted. The restrictions can express arbitrary

business logic. For example, the length of the name could be limited to a specific length.

Because the validation rules are expressed in natural language Garlang can automatically

generate validation messages that are understandable to the user.

That-clauses can also be applied to statements which state facts and are not statement

forms. Based on the previous example, we can state Bob’s name like this.

Bob has a name that is "Bob"

This statement seems to conflict with the rule stated in section ?? about referring

determiners because general references are only allowed in the context of the definition

of a kind. The interpretation of this statement is clear when reading it as an English

sentence. The intention is to assign a new name to Bob. Garlang can deduce in this case,

that "a name" is not a reference to any instance of the name kind but instead references

specifically the text "Bob". If the statements in this sentence are translated to Datalog,

they will look like this.

has(bob, Name), kindOf(name, Name), is(Name, "Bob")

These are not valid Datalog clauses because ground facts cannot contain variables. In this

example, we can replace the variable with a constant by applying the following reasoning.

The relationship "is" can be interpreted as an equality between the variable Name and

the text "Bob" which means that the variable could be substituted with the text "Bob".

In order to allow this substitution, the predicate kindOf(name, Name) has to be fulfilled.

Garlang can convert the text "Bob" implicitly to a name because name is a kind of text.

The result of this substitution are the following Datalog clauses.

name = uniqueId()

is(name, "Bob")

is(name, new(name))

has(bob, name)

6.5 Complex sentences 45

This example is the exception; otherwise, the same restrictions apply as with sentences

without that-clauses.

In summary, that-clauses can be described with the following pattern.

[MainStatement | Search] that [RestrictionStatement]

The that always attaches to the last general reference in the search or main statement. In

the restriction statement, the first noun is omitted and implicitly set to the noun which is

referenced by the that.

6.5.2 Conjunctions

Conjunctions allow chaining multiple statements together. They have not been used

in the shift plan example, but they are nonetheless important. For example, without

conjunctions, that-clauses can only attach a single statement to an object. This section

is just a rough outline of how conjunctions can be implemented in Garlang illustrated

by looking at how the conjunction and should work. Further work is necessary to add

additional conjunctions like or.

First of all, and can be used as a logical operation to combine multiple statements into one

statement which evaluates to true if all of the conjoined statements are true. An example

of this is a search that finds all of Bob’s Monday shifts.

all shifts that are assigned to Bob and happen on a Monday

In this example, the statement forms "A shift is assigned to Bob." and "A shift happens

on a Monday" are fused into a single statement which is attached with the that to the all

shifts search. The resulting Datalog goal looks like this.

?- kindOf(X, shift), assignedTo(X, bob), happensOnMonday(X)

In English and can also be used in combination with nouns to create an enumeration of

things. It is crucial that Garlang does not break the expectation of the user. Garlang

is inherently more restricted than natural language, but the linguistic constructs that

46 6.6 Rules

Garlang adopts should work in the same way how the user knows them from their usage

in natural language. Therefore and can also be used in Garlang to describe enumerations

like in this example.

Bob and Sandra are assigned to the example shift.

This statement can be viewed as a shorthand form for writing the same statement twice

with each person individually. Garlang would translate this sentence to the following

Datalog clauses.

isAssignedTo(bob, exampleShift)

isAssignedTo(sandra, exampleShift)

6.6 Rules

Rules allow the user to make more general statements. Instead of stating facts for individual

instances with rules facts can be automatically deduced for a whole group of instances

that match specific criterions. For example here is a rule that adds a "is assigned"-fact to

all shifts that have been assigned to an employee.

a shift is assigned when:

a manager assigned an employee to the shift.

This rule is translated to the following Datalog representation.

isAssigned(Shift):- assignedTo(X, Y, Shift)

The form of the Garlang rule is very similar to the Datalog representation. The head of

the Datalog clause is described by the sentence "a shift is assigned" which is mapped to

the predicate isAssigned. The body clause consists of the sentence "an manager assigned

an employee to the shift" which is mapped to the predicate assignedTo. A definite article

is used for "the shift" to indicate that this shift refers to the shift from the head clause.

6.6 Rules 47

Whereas the manager and employee are referred to with indefinite articles because the

shift should be considered assigned as long as any manager has assigned any employee.

The Datalog representation reflects the semantic one would expect from interpreting the

rule as plain English. The shift argument is the same variable as the shift in the clause

of the head while the employee and manager argument of the assignedTo predicate are

unrestricted variables. Garlang allows the order of the premise and the conclusion to be

switched. The previous rule could be rephrased like this:

when a manager assigns an employee to the shift:

the shift is assigned

Both forms are semantically equivalent. They can be described formally with these two

patterns:

[Statement] when: [Statement]

when [Statement]: [Statement]

There is another rule form which is introduced with the keyword after instead of when.

An example of this is the rule which allows the assignment of employees by dropping them

on a shift.

After an employee is dropped on a shift:

The employee is assigned to the shift.

After-rules can be used to create new facts that are permanent. In this example, the

employee keeps being assigned to the shift after the drop event is no longer happening. In

contrast, the facts that are generated by when-rules exist only as long as the premise of

the rule is true — both when and after generate the same Datalog representation. The

difference is how the generated facts of them are treated. How the retraction of statements

works in Garlang is described in the next section.

48 6.6 Rules

6.6.1 Retraction of facts

The retraction of facts is necessary when rules are applied to changing facts. Every time

the ground facts change the rules that apply to them have to be reevaluated and previous

facts generated by the rules have to be retracted. Ground facts either change when the

user modifies an object or when the Garlang environment publishes new facts, for example,

when the user starts dragging an object.

The standard model of Datalog does not allow the retraction of facts. This is a gap in the

language that needs to be addressed. There are extensions to Datalog like the approach

of Lam and Cervesato (2012) which adds fact retraction. Incorporating such a solution

to Garlang is beyond the scope of this paper. Instead, a simpler approach is described

here that works without altering the semantics of Datalog with the trade-off that it is less

efficient.

What makes retracting difficult is the problem that we need to track which rules applied

to the retracted fact and what facts have they generated that are no longer valid. An

alternative is that Garlang recomputes all rules whenever the ground facts change. For

that, Datalog has to track which facts have been added by a rule. Whenever a ground

fact changes, all derived facts have to be removed, and all rules have to be reevaluated on

the new ground facts.

After-rules are an exception because the facts they generate should persist after the premise

of the rule has been true once. Facts generated by such rules should be treated as ground

facts. This also means that after-rules can trigger a reevaluation of all Datalog Rules.

Oftentimes after-rules are used in combination with "event"-facts like when an object is

being dropped. These facts should be only active during a single reevalution to avoid

infinite loops caused by after-rules applied to "event"-facts.

Overall this solution requires many redundant recomputations of rules, but it is simpler

to implement. This is an acceptable trade-off for a prototype which is only used to

evaluate the usability of Garlang. For a more practical implementation additional work is

required to improve the performance. The paper of ?? goes into Detail how Datalog can

be incrementally reevaluated in Chapter 4 about incremental maintenance.

6.7 Value Statements 49

6.7 Value Statements

The previous section explained how rules work that defined yes/no statements. Besides

these simple rules, the shift planner example also introduced rules that calculate values like

the monthly hours of an employee. To implement rules which express calculations Garlang

has a special statement form called value form. A value form can be constructed from

a regular statement form by associating a value with it. A value form has the following

pattern.

[StatementForm] is [Value]

Following this pattern, the age of an employee could be defined as a value form like this.

An employee's age is a number.

In this case, the statement form "An employee’s age" is associated with a number by

using an is-construction to create a new value form. This value form can be used as a

regular statement form. For example, it can be used to state the age of Bob.

Bob's age is 35

A statement like this is called a value statement. Internally each value statements is

represented with a single Datalog predicate, the same way as a regular statement. The

previous statement has the following representation in Datalog.

ageIs(bob, 35)

What differentiates value statements is the fact that each of them has a corresponding

value expression that can be used to refer to its value. When a statement matches only the

statement form part of a value form it is interpreted as a value expression. For example,

this is the value expression that refers to the age of Bob.

Bob's age

50 6.7 Value Statements

This is translated to the following Garlang goal which returns the age of Bob.

?- ageIs(bob, X)

Value forms and value statement are a generalization of the is-relationship. Previously

the is-relationship has been introduced as an equality relationship between objects. With

value forms, is-constructs can also be used to express an equality relationship between a

statement and an object.

6.7.1 Operators

Garlang supports various operators for example to perform mathematical calculations

or to aggregate results. These built-in operators are implemented as custom functions

which are exposed to the end user as value forms. For example, the plus-operator has the

following form.

a number + a number is a number

This operator could be used to calculate the result of Bob’s age plus one like this.

Bob's age + 1

This expression would be translated to the following goal which returns the sum as a

result.

? - ageOf(bob, Age), plus(Age, 1, Y)

In the Datalog goal, the predicate plus refers to a built-in operator. Because Garlang

implements the plus operator as a custom function it gets called after all other variables in

the Datalog clause are resolved. In this example, age would be resolved to 35 and passed

together with 1 to the plus-function which runs the calculation and resolves as a result Y

with 36. Unlike regular Datalog predicates, built-in predicates expect all arguments which

occur in the statement form part of the definition to be a constant and the assigned value

6.7 Value Statements 51

to be a variable. For example, this statement would be invalid because the plus function

expects constants as the first two arguments and a variable as the third argument.

a number plus Bob's age is 5

Aggregations are exposed to the user the same way as other built-in operators. For example,

the "number of"-operator which returns the count of a result has the following form.

the number of some objects is a number

The some-quantifier indicates that this operator can be only applied to a list of objects.

Searches return lists of objects. They can be used together with value expressions. Consider

as an example, how the "number of"-operator can be used to count the number of results

of the search "all employees".

the number of all employees

Aggregators are internally implemented with the aggregation extension of Datalog. Because

aggregations can be only used in the head of a clause Garlang has to generate a temporary

rule to evaluate this example. In this example, the temporary rule is called aggregatorValue.

In the real implementation, Garlang would generate a globally unique name for it to avoid

name collisions.

aggregatorValue(count<Employee>):- kindOf(Employee, employee).

The resulting goal then queries for the value of the rule.

?- aggregatorValue(x)

6.7.2 Special value form

In previous examples properties of an object like age have been defined with a has-statement

and a that-clause. Unfortunately, the is-construction from the previous section can’t be

52 6.7 Value Statements

applied to this form. Garlang solves this problem by automatically generating value forms

for each property declaration. This generated value form has the following pattern.

the [Kind] of [Object] is [Object]

This form can be used as an expression to access both singular values like the name of an

employee or values that an object has multiple of like the shifts of an employee.

the name of Bob

the shifts of Bob

The value form described by this of-relationship is equivalent to the original has-relationship.

The conversion between these forms works in both directions. If a rule is defined with a

of-relationship the equivalent has-relationship is automatically generated and the other

way around. This flexibility allows the user to pick the most natural form. An example of

a rule using the value form is the definition of the monthly working hours of an employee.

The work time of an employee per month is a duration: ...

As a has-relationship, an equivalent rule can be defined like this.

An employee has a work time per month that is a duration: ...

Defining this special value form for has-relationships is not the most elegant solution.

There is a more general pattern behind this. For example, consider this statement form

that defines how much an employee works per week.

An employee works a duration per week.

This is not a has-statement but it can be similarly restructured to turn it into a statement

that references the working time of an employee per month.

The duration an employee works per week.

6.7 Value Statements 53

From this example, we might infer the logic that a statement can be turned into a value

expression by reordering the statement: The object we want the expression to refer to has

to start the sentence and we need to refer to it with a determinate article. The problem

with this logic is that there is no clear way how Garlang can differentiate between this

special case and regular definite determiners that reference a previously defined object.

This problem can be illustrated with the following example which describes the leader of a

department.

A department is lead by a manager.

With this statement form, we could formulate these two statements.

The manager leads the department

The manager leading the department

When read as English text there is a clear interpretation. The first line makes a statement

that the manager is the leader of the department and the second line is an expression that

refers to the manager of the department. Garlang is not able to differentiate this nuance

because of its limited language model. Unlike previous ambiguous cases, there is no simple

heuristic that can differentiate between these two cases. Instead of guessing randomly

Garlang implements this special form for has-statements which covers most practical cases

as we have seen in the shift planner example. This issue should be addressed in future

iterations of Garlang.

6.7.3 Rule examples

The original motivation to introduce value statements was to allow the definition of rules

that can calculate values. In this section, we will dissect two rules from the shift planner

example to explain how value expressions are used in the context of rules. The first rule

calculates the monthly work time of an employee.

The work time of an employee per month is a duration (monthly work time) when:

The monthly work time: the weekly work time * 4

54 6.7 Value Statements

The employee works a duration (weekly work time) per week.

This rule uses the value form to define the monthly work time. The value is a duration,

and it is given the local name "monthly work time". The body of the rule creates a local

definition for the monthly work. This definition references the weekly work time, which is

defined in the line below. Statements in a rule body do not follow a specific order. Because

the statement in the second line has no value form a local name is used to refer to the

duration.

When translating this rule multiple Datalog rules are generated. It is necessary to split

this rule up because a Datalog clause can only have a single predicate in the head. The

monthly work time calculation generates two predicates because the assertion that an

employee has a worktime consists of the two statements: "an employee has a worktime"

and "a worktime is a duration".

First of all, Garlang generates a helper function that calculates that contains the logic to

calculate the duration. In this example the function is called hasMonthlyWorkTime. In

the real implementation, the name would be a globally unique id. The helper function has

the following definition.

hasWorkTimePerMonth(Employee, Duration):

kindOf(Employee, employee),

kindOf(Duration, duration),

multiply(WeeklyDuration, 4, Duration),

worksPerWeek(Employee, WeeklyDuration),

kindOf(WeeklyDuration, duration).

The first two clauses in the body are generated by the definite references to employee

and duration in the condition of the Garlang rule. The third clause maps to the multiply

operator of the duration kind which accepts a number and a duration to create a result

duration. The last two clauses are generated by the statement that references the weekly

work time of the employee.

6.7 Value Statements 55

The next two rules use the value of the helper function to create the facts that are actually

needed. The first rule adds the work time kind to the duration.

is(Object, new(workTime)):

is(Object, Duration),

hasWorkTimePerMonth(Employee, Duration).

Finally, the second rule adds the work time that the previous rule created to the employee.

has(Employee, Worktime):

hasWorkTimePerMonth(Employee, Duration),

is(Object, Duration),

is(Object, WorkTime).

Value statements can also be used with yes/no rules. An example of this is the rule that

determines the availability of an employee during a month.

An employee has available time during a month when:

The worked time is less than the total work time.

The total work time: the total work time of the employee per month.

The worked time: the worked time of the employee during the month

This Garalang rule can be translated to the following Datalog representation.

hasAvailableTimeDuring(Employee, Month):

kindOf(Employee, employee),

kindOf(Month, month),

lessThan(WorkedTime, TotalWorkTime),

has(TotalWorkTime, Employee),

kindOf(totalWorkTime, totalWorkTime),

56 6.8 Custom object literals

has(WorkedTime, Employee),

kindOf(WorkTime, workedTime),

The rule follows a similar pattern to the previous rule. The variables of the

hasAvailableTimeDuring predicate are restricted to be an employee and a month. The

less than comparison is mapped to the lessThan predicated defined by the duration kind

which is defined in terms of the built-in < comparison for numbers. The comparison

is implemented as a custom function which only generates a matching clause if the less

than relationship is fulfilled. The two values "total work time" and "worked time" are

referenced by their kind.

6.8 Custom object literals

Garlang has special literal forms for numbers and text. With value forms, the users can

define custom literals for their own kinds based on number and text literals. Many of

the built-in kinds of Garlang also provide literal forms using value forms. As an example,

consider the duration kind which has the following definition.

Duration <plural durations>

A duration has a value that is a number.

...

The value of the duration is the time in seconds. Without a literal form for the duration,

the definition of the work time of an employee requires 3 statements.

The work time is a duration.

The value of the work time is 40 * 60 * 60.

Bob works the work time per week.

Instead it would be more convenient if the user could declare durations with expressions

like "40 hours" or "1:00:00". As an example, the hour literal can be implemented with the

following value form.

6.9 Negation 57

a number (hours) hours is a duration when:

the value of the duration is the hours * 60 * 60

Because of Garlang’s heuristic-based matching, the value form is flexible and can be also

used in the singular like "1 hour"

6.9 Negation

Negation is another concept that Garlang can borrow from the English language. With

negation, a statement can be turned into a negative statement that asserts that the original

statement is not true. In English, the negative form of a statement can be constructed

with the adverb not. Consider these two example statements with their negated version.

Bob is assigned by Sandra to the example shift.

Bob is not assigned by Sandra to the example shift.

Sandra assigns Bob to the example shift.

Sandra did not assign Bob to the example shift.

The main differences in both of these examples between the positive and the negative

statement is the word not. There are cases where the rest of the sentence has to be adapted

as well, like the second sentence, but this can be dealt with by the heuristic matching.

Generally, Garlang can use the existence of the word not as an indicator that a statement

should be matched to the negated version of the original predicate.

In Garlang, negations could be potentially used in five different contexts: statements,

statement forms, rules, and searches. It is necessary that we look at each context to ensure

that the semantics of not in Garlang match the semantics of how not is used in English.

The primary use case of negation is to define negative constraints. Such constraints can

be applied in searches and rules. This explanation uses the highlight-rule of the shifts as

an example, but negative constraints can be applied to searches in the same way. The

highlight-rule has the following definition.

58 6.9 Negation

A shift is highlighted when:

The shift is not fully assigned.

The translation of this rule to Datalog is straight forward. Because the "is fully assigned"-

statement is negated the resulting predicate in the Datalog representation is negated as

well.

isHighlighted(Shift): kindOf(Shift, shift), ¬isFullyAssigned(Shift).

Negations can also be used to define rules as a negative form. For example, instead of

defining when a shift is assigned with a negative form, we can define when a shift is not

assigned.

a shift is not assigned when:

No employee is assigned by a manager to the shift.

This rule is translated to the following Datalog representation.

isNotAssigned(Shift):

kindOf(Shift, shift),

¬isAssignedByTo(Employee, Manager, Shift),

kindOf(Employee, employee),

kindOf(Manager, manager)

When Garlang matches statements to a rule defined in the negative form the negation

works in reverse. If the statement contains no not the statement should be matched to

the negated version of the predicate if it does contain a not it should be matched to the

original version of the predicate.

Using not in the context of statements is redundant. For example, stating "Bob is not

assigned by Sandra to the example shift." has the same effect as not making this statement.

We have used the closed world assumption to add negation to Datalog. Therefore, for

any positive fact, that is not stated, we assume that the negated fact is true. Negative

6.9 Negation 59

statements could become useful if we added the ability to retract statements to Datalog. A

negative form could then be interpreted as a retraction of a previous statement. Determining

how the semantics of this work in detail is outside the scope of this paper and has to be

addressed in future works.

Negations in statement forms behave similarly to negations in statements that state facts.

A potential use case is to override previous statement forms. For example, in the manager

kind, we could define the following statement form to disallow the assignment of managers

to shifts.

A manager is not assigned by a manager to a shift.

While this might be useful in some situations, this overriding semantic conflicts with the

idea that kids are different perspectives on the same object. Instead, this problem can be

solved by modeling the problem differently and moving the assignment statement form to

a separate kind that manager is not based on.

60

7 Summary

7.1 Related work

Garlang takes a lot of inspiration from the programming language Realtalk which is

an experimental programming language developed by the Research Lab Dynamicland 3.

Realtalk is part of a bigger research project that explores a new computational medium

that is embedded in the physical world.

Realtalk is an extension of Lua that adds a natural-language-like version of Datalog to it.

Rules are defined with "when", and facts are stated as claims and wishes. Programs in

Dynamicland are attached to physical objects which can communicate through Realtalk.

It has a centralized Datastore of all facts and wishes that all programs can access. This

example from Rizwan (2018) describes a physical object which adds the label "it’s a bird"

when it is pointed at another object that claims to be an airplane.

When /a/ is a "airplane",

/a/ points "down" at /p/:

Wish (p) is labelled "it's a bird!"

End

From Realtalk Garlang borrows the idea of formalizing natural language by mapping

sentences to Datalog predicates. While Garlang’s ultimate goal is to be as natural as

possible, Realtalk is more pragmatic. It allows users to mix Realtalk rules and claims

with ordinary Lua code. This makes Realtalk more powerful, which allows it to be

bootstrapped, but in return, it requires users to learn at least some Lua. Instead, Garlang

pushes conventional program code to the boundaries of the system by encapsulating it in

custom built-ins.

Another programming environment that was very inspirational to Garlang is Inform

74, which is a design system for interactive fiction. It is one of the very few natural
3https://dynamicland.org/
4http://inform7.com

7.1 Related work 61

programming languages that is actually based on natural language constructs instead of

only attaching a more natural looking syntax to a conventional programming language.

From Inform 7 Garlang borrowed the idea of using metaphors from existing textual

mediums. Examples of this are the concept of a dictionary as the representation of the

knowledge model or reusing syntactic conventions like parenthesis as the basis for the

language construct of local names.

Figure 7.1: Inform 7 IDE with its dictionary

Besides these direct influences, there is also a broader historical context that has to be

considered. The main focus of this paper is to sketch out a new paradigm for information

software as an alternative to the prevalent GUI model. Relating all contained ideas to

their origin is beyond the scope of this paper. This section provides a few pointers to

guide future research to embed the concept of this paper in a broader historical context.

The introduction just touched on the topic of programming as a new kind of literacy

to reflect the current state in our culture. The original idea goes back all the way to

the beginnings of computing in 1960. Alan Perlis advocated in 1961 that learning to

program should be mandatory for all undergraduates, the same way all of them have to

take a writing course Vee (2013). Since then numerous environments have been developed

to make programming more accessible for non-programmers. From this, the field of

end-user development emerged. Besides natural language programming, other popular

approaches are programming by example, visual programming, and spreadsheets (Paternò).

A thorough survey is necessary to embed Garlang within that field.

62 7.2 Conclusion

The end-goal of the concept proposed in this paper is not just to make programming

accessible to end-users so they can generate apps in the existing GUI application world.

Instead, our solution should provide a uniform environment that utilizes these new abilities

of the user. The user should be able to freely combine different pieces of software and alter

them as they need without barriers between applications. Besides the "boxed application"-

model there exist other models for software that have similar goals to Garlang.

The Unix philosophy is a very popular example. It relies on the common abstraction that

everything is a file. Instead of building big applications that solve complex problems it

advocates for single-purpose tools that can be combined into specific solutions to solve the

exact problem of the user (Doug McIlroy (1978)).

Another more recent examples are Mashups which have become popular with the Web 2.0

movement. A web app is seen as a provider of some service that can be combined with

other applications. This is possible through the APIs they provide. An example for a

current iteration of a mashup is the app IFTTT (If this then that) 5 which allows the user

to create new workflows from the apps they use.

These are just two examples more research is necessary to compile a more exhaustive list

of alternative models which Garlang can be compared to.

7.2 Conclusion

This paper tries to bridge the dichotomy that exists in software today where there is a

strict separation between the people who use software and the people who build software.

It investigates the question why there is such a large discrepancy between the flexible

nature of software and what the end-user experiences: fixed applications that are built for

a specific purpose that cannot be adapted and are hard to combine with one another.

This paper identifies the GUI pattern as a major cause of this problem. The GUI gives

the inherently shapeless software a quasi-physical shape and thereby it loses a lot of its

flexible qualities. With a GUI the only way to get access to the underlying representation

is manual interaction.

5https://ifttt.com/

7.2 Conclusion 63

In order to tackle this problem, the scope of this paper is limited to information software.

This is software that helps the user to learn things, to get answers to a question, compare

different alternatives and come to a conclusion. In this category of software, the focus

of the user is to answer a question. This is a mismatch with the GUI pattern which

focuses on the manipulation of virtual representations. GUIs also lacks a representation

for complex questions. The user can only express them by navigation through the software

to manually piece together the information they need.

As an alternative, this paper proposes a concept for a programming environment based

on natural language called Garlang. Instead of utilizing the user’s knowledge about the

physical world, as GUIs do, it utilizes their knowledge about language. Language has the

benefit that it is able to express complicated concepts. Another advantage of language

is that is accessible for the user to edit and create textual representation. Compared to

interactive interfaces which are a read-only medium with the exception of the programmers

who built it.

Garlang uses language representations for both the knowledge model of the application

and the questions of the user which are represented as searches on the knowledge model.

This gets the user closer to the actual capabilities of the software.

The environment consists of two parts the dictionary and the explorer. The dictionary

represents the knowledge model of the application. It describes the kind of objects the

application can represent together with their characteristics, the relationships between the

objects and the computations that can be performed on them. Garlang uses the metaphor

of a Dictionary to provide a representation that is familiar to the user.

The explorer is the main interface of the Garlang environment. It helps the user find

answers to their questions. The user can express their questions as searches based on the

concepts defined in the dictionary. They can display the results of a search in different

views, compare them with alternative results, or run additional searches to provide more

context.

Garlang has intentionally no separation between development environment and runtime.

It provides a unified environment that allows going back and forth between using an

application and modifying it without switching contexts. This helps to remove the barrier

of entry for moving from a passive to an active user. This duality between using and

64 7.2 Conclusion

modifying an application is reflected both in the dictionary and the explorer. The dictionary

can be used as a reference for the user to understand how they can formulate their searches.

At the same time, the dictionary serves as an editor that allows the user to extend the

existing definitions. The explorer follows the same pattern. The user can start by loading

a template for their specific use case with preconfigured searches. If the configuration of

the template is not sufficient for their problem they can just adapt the tool in the context

of their problem without having to switch into a different mode.

The concepts of Garlang rely heavily on a good language representation for both the

knowledge model and the searches that the user can run on the knowledge model. Natural

language is easy to understand for humans but computers have a hard time interpreting it.

Especially the ambiguous nature of language and the context-dependent interpretation are

a problem that hasn’t been solved yet. To solve this problem, Garlang defines a naturalistic

controlled language that tries to be naturalistic enough to be learnable by end users and

at the same time formal enough that a computer can generate a runnable program from it.

Garlang interprets language as a combination of statements. Garlang’s model of language

is not based on complex natural language processing; Instead, it parses statements by

identifying all nouns in the sentence. The nouns become the objects in the statement. The

remaining text is used as an identifier to match it to one of the predefined statements in

the dictionary. Internally each statement in Garlang is translated to a Datalog predicate.

Garlang supports a limited set of grammatical constructions like determiners, negation,

conjunctions, and that-clauses. In combination, these are sufficient enough to express

rules, searches, and basic computations.

In order to illustrate the feasibility of the language, this paper walked through a hypothetical

scenario of a shift manager who wants to know how to distribute his employees to make a

shift plan. This scenario demonstrated that Garlang can model non-trivial problems. It

also showed how Garang can make specific applications like a shift planner potentially

redundant because the user is provided with a base model, in this case, a calendar, and

they can build the specific tool they need themselves.

Garlang is not the ultimate solution that will replace professional software development,

but it points to a potential future where the roles of developers and users are changed.

Users are empowered to build their own tools which makes them more independent of

7.3 Future work 65

developers. Professional developers are still necessary. While Garlang allows users to

write custom definitions in a naturalistic programming language, modeling a knowledge

domain with it still requires skill. Most end-users probably do not want to write their own

applications from scratch. They have a problem they need to solve. For that, they want a

predefined model that they can adjust to fit their needs. Garlang is also not completely

bootstrapped there are some things that have to be programmed outside of it like adding

custom built-in predicates, defining new visualization and custom input for new data

types. Instead of the software landscape, we see today where the end user has to pick a

ready-made solution a system like Garlang could become an ecosystem where developers

provide tool-kits that can solve problems in a specific problem domain and the end user

can mix and match tool-kits to assemble the tool that solves exactly the problem they

have.

7.3 Future work

What this paper proposes is only a concept so far. The next step is to create a series of

prototypes to evaluate different aspects of Garlang. The biggest challenge of this project

is to find a solution that appeals to end-users. Developers will be much easier to convince

to build software for a different platform once they see that there are potential users.

Appealing to end-users mainly boils down to two challenges. First of all the language

has to be easily learnable. This paper just laid the groundwork and showed that such

a language is theoretically possible. More extensive user studies are necessary to find

a solution that works. This is not only a problem of designing the language but also

designing an environment that supports the user, guiding them to solve their problem.

The second problem is how to communicate to end-users what they can do with an

environment like Garlang. Users are trying to solve a specific problem. They do not want

a programming environment they want a solution to their problem. Instead of selling

Garlang as a programming environment it has to be communicated to the user as a solution

to a specific problem where the solution then benefits from the flexibility that it is part of

a full programming environment.

66 References

References

Determiners. URL https://dictionary.cambridge.org/us/grammar/british-
grammar/determiners-the-my-some-this.

Ceri, S., Gottlob, G., and Tanca, L. (1989). What you always wanted to know about
datalog (and never dared to ask). IEEE transactions on knowledge and data engineering,
1(1):146–166.

Clark, P., Murray, W. R., Harrison, P., and Thompson, J. (2010). Naturalness vs.
predictability: A key debate in controlled languages. In Fuchs, N. E., editor, Controlled
Natural Language, pages 65–81. Springer Berlin Heidelberg.

Doug McIlroy, E. N. Pinson, B. A. T. (1978). Unix time-sharing system: Foreword.

Green, T., Huang, S., Loo, B., and Zhou, W. (2013). Datalog and Recursive Query
Processing. Foundations and trends in databases. Now Publishers.

Lam, E. S. L. and Cervesato, I. (2012). Modeling datalog fact assertion and retraction
in linear logic. In Proceedings of the 14th symposium on Principles and practice of
declarative programming, pages 67–78. ACM.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710.

Obama, B. (2016). Weekly address: Giving every student an opportunity to learn through
computer science for all.

Paternò, F. End user development: Survey of an emerging field for empowering people.
2013:1–11.

Prensky, M. (2006). Listen to the natives. Educational Leadership, 63(4):8–13.

Pulido-Prieto, O. and Juárez-Martínez, U. (2017). A survey of naturalistic programming
technologies. ACM Comput. Surv., 50(5):70:1–70:35.

Rizwan, O. (2018). Notes from dynamicland: Geokit. URL https://rsnous.com/posts/notes-
from-dynamicland-geokit/background-on-realtalk.

Vee, A. (2013). Understanding computer programming as a literacy. 1(2):42–64.

Victor, B. (2006). Magic ink: Information software and the graphical interface, 2006. URL
http://worrydream.com/MagicInk.

